Nanocarbon hybrids for biosensors and microelectronics

N. F. Santos PhD. Student

Supervisor: Prof. Florinda Costa

Objectives

- To produce strongly bonded, well intercalated sp²/sp³ hybridized phases, keeping good structural and functional properties.
- To obtain a synergistic combination of critical properties for applications in:

 -microelectronics (stable and efficient <u>field emitters</u>, high Q-factor <u>MEMS/NEMS</u>,...)
 -electrochemistry (high sensitivity/selectivity <u>biosensors</u>, supercapacitors, ...)

Methods and techniques

Microwave Plasma CVD

Parameter	DNWs/graphite	NCD/CNTs	•
Microwave Power (W)	1800-2200	1800-3000	•
Pressure (torr)	70-100	90-120	

- Dual Fe catalyst delivery mechanism for simultaneous synthesis of NCD and CNT.
- Characterization by:

FIGURE 1: SEM micrographs of as-grown samples: a) and b) with the presence of Fe catalyst at high and low MW power, respectively, and c) without the presence of Fe catalyst.

Results

- Intimate mixtures of NCD and multi-walled CNTs was achieved in two main configurations:
 - A porous 3D-like netware of CNTs interconnecting NCD clusters.
 - A CNT netware partially embedded in NCD clusters tending to coalesce. Dense hybrid structures were punctually observed.
- Intense G-band, high G/D ratio and a strong symmetric 2D band suggest good MWCNT structural quality. The NCD presents good crystallinity (strong narrow peak at 1332 cm⁻¹), with the presence of the typical transpolyacetylene (TPA) bands.
- High aspect-ratio and nearly vertically-aligned DNWs as thin as 5 nm were produced without Fe catalyst. Dark field and low-loss EFTEM studies clearly distinguish the sp³ bonding of the nanowall from the sp² bonding of the surrounding graphite. Crystal twinning was observed,

Raman shift (cm⁻¹)

FIGURE 2: µRaman spectra @ 442 nm of as-grown samples: i), ii) with Fe catalyst at high MW power, from region 2 and 1 (figure 1a), respectively, iii) with Fe at low MW power, and iv) without Fe.

typical of diamond (111) facets.

Publications

- SIMULTANEOUS CVD GROWTH OF NANOSTRUCTURED CARBON HYBRIDS, N.F. Santos, T. Holz, A.J.S. Fernandes, R.F. Silva and F.M. Costa. Accepted for publication in NATO ASI BOOK SERIES (2014).
- SIMULTANEOUS SYNTHESIS OF CARBON NANOTUBES AND NANOCRYSTALLINE DIAMOND BY MPCVD, N.F. Santos, J. Rodrigues, T. Holz, A.J.S. Fernandes, R.F. Silva and F.M. Costa, 13th European Vacuum Conference, 8-12 September 2014, Aveiro, Portugal (oral presentation).

FIGURE 3: TEM cross section analysis of DNWs/graphite hybrid. a) diffraction pattern and b), c), d) dark field images formed using diffraction spots B, C and A, respectively. e) and f) EF-TEM images formed using inelastically scattered electrons from sp² and sp³ phases, respectively. g) HR-STEM image of a DNW with the corresponding diffraction pattern as inset.

RES, VG AND

Project in collaboration with Rui Silva (CICECO) and Carlos Achete (INMETRO, Brazil)

i3N

ANOFABRICATION

universidade de aveiro theoria poiesis praxis

