Transparent p-type transistors based on Cu₂O – Understanding material properties to enhance device performance

Jonas Deuermeier, PhD. Student

Supervisors: Prof. Elvira Fortunato (UNL) Prof. Andreas Klein (TUD)

Objectives

What is responsible for limited device performance of p-type oxide TFTs?	Electronic defects? Diffusion? Where in the device?	X-ray and ultraviolet	7
How can we measure this?	Electrical characterization? Photoelectron Spectroscopy on interface?	Photoelectron Spectroscopy	74
Can we overcome the limitations?	Mechanisms intrinsic to the material? Complications induced by fabrication?		- 1
What can we do to improve devices?	Alternative combination of materials? New device structures? ?	Preparation chambers: Magnetron	hv) -e
Methods and techniques		Atomic Layer Deposition	
Reactive Magnetron Sputtering: p-type Cu ₂ O* Atomic Layer Deposition: gate dielectric Al ₂ O3	- Photolithography \longrightarrow Devices	0.3-0.4	Figure 1 Cu(II) 0.2 $Figure 1$
In situ X-ray and Ultraviolet	Transport properties		

Photoelectron Spectroscopy (fig. 1) Chemical analysis and energy band alignment of substrate and film Comparison of bulk and thin film Cu₂O

*General characterization of material: X-ray diffraction, Scanning Electron Microscopy, Hall-Effect, UV-Vis-NIR Spectroscopy, ...

Results

Non-stoichiometric Cu_{2-y}O:

- More oxidized state (y>0) \rightarrow more intrinsic acceptors V_{Cu} \rightarrow higher hole concentration ^[1]
 - \rightarrow Keep Cu₂O stoichiometric, even down to the interface level

Top-gate geometry: Clear chemical damage to Cu_2O channel by Al_2O_3 deposition ^[2] (fig. 2)

- Al_2O_3 by Atomic Layer Deposition \rightarrow reduction to Cu(0), Schottky-barrier formation
- Al_2O_3 by reactive Magnetron Sputtering \rightarrow oxidation to Cu(II), lower Fermi energy \rightarrow No working transistor devices

Bottom-gate geometry: Evidence for defective growth of Cu₂O on dielectric

- High Hall mobility (32 cm²/Vs) but low field-effect mobilty and on-off ratio in TFT (fig. 3)
- In situ XPS: Cu(II) in Cu₂O changes with increasing film thickness (fig. 4)
- In progress: Temperature- and time-dependent electrical measurements of bulk Cu₂O and TFTs to tackle questions on defect mechanisms

I_D (nA)

Publications

RES, VG AND ION [2] **Deuermeier, J.**, Yanagi, H., Bayer, T. J. M., Martins, R., Klein, A., and Fortunato, E., *Advanced Materials Interfaces* (submitted)

Figueiredo, V., Pinto, J. V., **Deuermeier, J.**, Barros, R., Alves, E., Martins, R., and Fortunato, E., *J. Disp. Technol.* 9, 735–740 (2013).

Bayer, T. J. M., Wachau, A., Fuchs, A., **Deuermeier, J.**, and Klein, A., *Chem. Mater.* 24, 4503–4510 (2012).

[1] Deuermeier, J., Gassmann, J., Brötz, J., and Klein, A., J. Appl. Phys. 109, 113704 (2011).

