## **MICROINJECTION MOULDING OF POLYAMIDE 6 AND POLYAMIDE 6/CARBON NANOTUBES COMPOSITES**

Extruded







Tânia Ferreira, PhD. Student Supervisor: Prof. António J. Pontes Prof. Maria Conceição Paiva

#### **Objectives**

# IPC

- Dispersion of carbon nanotubes (CNT) in polyamide 6 (PA6) by melt mixing in a twin screw extruder, and preparation of nanocomposite microparts by microinjection moulding (µIM);
- Analysis of the CNT dispersion (using as received and functionalized CNT) in the PA6 matrix after extrusion and after  $\mu$ IM [1].
- Analysis of the PA6 morphology induced by the processing method and by mixing the CNT [2].

### Methods and techniques

Nanocomposite samples with 5 µm thickness were cut with along the flow direction of the extruded samples and in the central region of the  $\mu P$  and observed by optical microscopy. Samples were cryo-fracturated and analysed by SEM. (fig. 1)

The morphology of the extruded and µIM samples was analyzed by differential scanning calorimetry (DSC) and by wide angle X-ray diffraction (WAXD). DSC was performed under  $N_2$ (g) flow at heating rate of 10 °C min<sup>-1</sup>. Diffraction patterns were acquired for extruded and µIM samples, across the specimen thickness and across its inner region (after removing a surface layer with approximately 50  $\mu$ m thickness).



Fig. 1 – Optical microscopy (left) and SEM (right) micrographs of the composites with 4.5 wt.% CNT, obtained after extrusion and µIM.



#### Results

- Extruded and  $\mu$ IM nanocomposites show good CNT dispersion, although overall the  $\mu$ IM samples present smaller CNT agglomerates compared to extruded composites. The SEM micrographs showed that f-CNT present better adhesion to PA6 (fig. 1).
- DSC analysis showed that  $\mu$ IM samples with low CNT content presented a secondary  $\bullet$ crystallization process at a temperature just below the onset of the melting peak, which was not observed for the extruded materials and for the µIM composites with high CNT content (fig. 2).
- WAXD results show that skin region of the PA6  $\mu$ IM contains mostly  $\gamma$  crystalline form and  $\bullet$ the PA6 extruded material and all composites presented a larger contribution of the  $\alpha$  form (fig. 3 and 4). The overall crystallinity was considerably higher for the extruded materials than  $\mu$ IM, and the main contribution to this difference was the larger amount of  $\alpha$  phase crystallinity. Molecular orientation was observed only for  $\mu$ IM samples (fig. 3).

| Temperature (°C) |     |     |     |     | Temperature (°C) |     |     |     |     |
|------------------|-----|-----|-----|-----|------------------|-----|-----|-----|-----|
| 170              | 190 | 210 | 230 | 250 | 170              | 190 | 210 | 230 | 250 |

Fig. 2 - DSC thermograms of PA6 and PA6 with p-CNT and f-CNT for extruded and  $\mu$ IM nanocomposites, (1 and 4.5% w/w) under controlled heating.



Fig. 3 - WAXD patterns and integrated intensity profiles of extruded and microinjection moulded samples.



- 1 Ferreira T, Paiva MC, Pontes A, Dispersion Of Carbon Nanotubes In Polyamide 6 For Microinjection Moulding, J Polym Res 2013, 20, 301.
- 2 Ferreira T, Lopes PEC, Pontes AJ, Paiva MC. Microinjection Moulding of Polyamide 6 –

Polym. Adv. Technol. (2014). DOI: 10.1002/pat.3322

Fig. 4 - Overall crystallinity of  $\alpha$  and  $\gamma$ -phase content data obtained from WAXD results..

TRUCTURES, ODELLING AND ABRICATION

