
Metadopants for Semiconductor Nanocrystal Superlattices

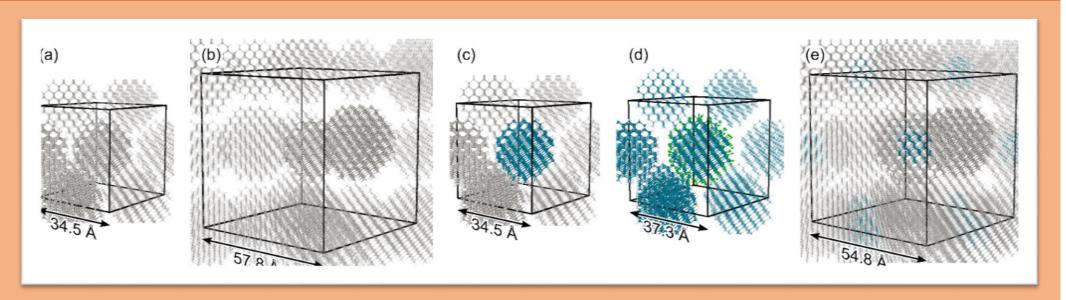
Tiago Á. Oliveira PhD. Student

Supervisor: Prof. J. Coutinho Co-supervisor: Prof. V.J.B. Torres

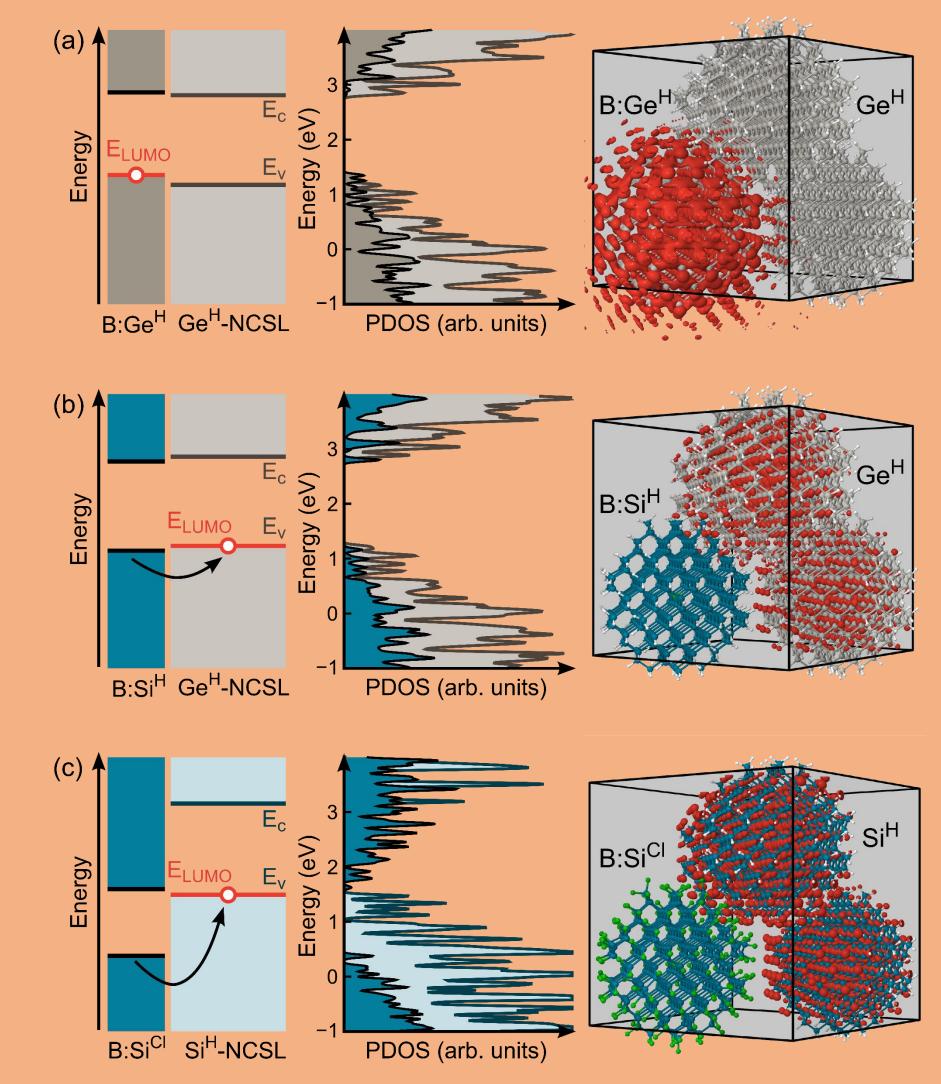
Objectives

- Achieve high electrical conductivity in solid films of small semiconductor nanocrystals (NCs). Look for affective doping strategies;
- Show that suitable engineered NCs (referred to as *metadopants*) can lead to a controllable and athermal activation of carriers.

Methods and techniques


- Large-scale first-principles calculations;
- Density functional theory (AIMPRO code), along with the local spin-density approximation to the correlation energy;
- Pseudopotentials for atomic core states and linear combinations of Gaussians functions for valence states;
- Superlattice (SL), atomic and electronic relaxation of several NCSLs per cell (Fig. 1);
- Location of acceptor levels of *metadopants* with respect to the conduction band bottom of a nanocrystal SL, E_c -E(-/0), estimated by comparing electron affinities (EA) taken from pristine and *metadoped* SLs as E_c - $E(-/0) = EA_p EA_{md}$, where $EA_p \equiv E_c$ can be interpreted as the conduction band bottom of the pristine SL;
- Cancelation of image-charge interactions in charged systems with periodic boundary conditions;
- Projected density of states (PDOS) produced from Mulliken gross populations obtained after projecting the Kohn-Sham eigenstates onto all atom-centered basis functions.

Results


- Metadopants based on size-tuning [Table I (b)] and core-shell structuring (e) did not lead to sizable improvements in hole binding energy values (E_h) ;
- The higher-lying valence band top of the Ge-NCSL with respect to the Si-NC HOMO (Fig. 2 (c) left) results in the athermal transfer of the hole from the *metadopant* to the surrounding Ge-NCs.
- Halide-terminated Si-NCs show dramatic EA and IP offsets with respect to H-terminated Si-NCs [Fig. 2 (c)].
- NC solids and SLs can be doped with help of dispersed and suitably engineered NCs (*metadopants*), consisting of doped structures whose intrinsic redox levels are calibrated to drive acceptor levels (donor levels) below the valence band top (above the conduction band bottom) of the solid.

Publications

[1] Coutinho, et al., Submitted to Phys. Rev. X (2014). [3] Carvalho, et al., Phys. Rev. B **86** 045308 (2012). [2] Pereira, et al., Nano Lett. **14** 3817 (2014).

Fig. 1 – Some superlattice structures studied in this work along with their conventional (cubic) unit cells and respective equilibrium lattice parameters. See Table I for chemical composition and size information.

Fig. 2 – Level offset diagrams across metadopants (B:X^Y) and undoped NCs in X'^{Y'} NCSLs (left), Kohn-Sham projected density of states (PDOS) over the metadopant and neighboring nanocrystals (middle), and isosurface of constant electron density shown in orange (right) for three p-doped NCSLs, namely (a) $B_S: Ge_{2.46 \text{ nm}}^H/3Ge_{2.46 \text{ nm}}^H$, (b) $B_S: Si_{2.38 \text{ nm}}^H/3Ge_{2.46 \text{ nm}}^H$ and (c) $B_S: Si_{2.85 \text{ nm}}^{Cl}/3Si_{2.38 \text{ nm}}^H$. In each unit cell the metadopant is represented on the lower left corner.

	Туре	Unit Cell	E _h (eV)
(a)	SC	$B_S: Ge_{2.46 \text{ nm}}^H/3Ge_{2.46 \text{ nm}}^H$	0.23
(b)	fcc	$B_S: Ge_{2.46 \text{ nm}}^H/Ge_{3.19 \text{ nm}}^H$	0.22
(c)	SC	$B_S: Si_{2.38 \text{ nm}}^H / 3Ge_{2.46 \text{ nm}}^H$	0.04
(d)	SC	$B_S: Si_{2.85 \text{ nm}}^{Cl} / 3Si_{2.38 \text{ nm}}^{H}$	-0.04
(e)	fcc	cs-B _S : SiGe ^H _{3.16 nm} /Ge ^H _{3.19 nm}	0.19
(f)	SC	$B_S: Si_{2.85 \text{ nm}}^F / 3Si_{2.38 \text{ nm}}^H$	-0.06

Table I – Superlattice type (sc: simple cubic; fcc: face-centered cubic), and hole binding energy (E_h) of p-type metadopants in several NCSLs.

